

Electrical Engineering Principles and Applications

SIXTH EDITION

Allan R. Hambley

PEARSON

Chapter 1

1.1	Determining Current Given Charge	27
1.2	Power Calculations	32
1.3	Energy Calculation	33
1.4	Resistance Calculation	46
1.5	Determining Resistance for Given Power and Voltage Ratings	48
1.6	Circuit Analysis Using Arbitrary References	50
1.7	Using KVL, KCL, and Ohm's Law to Solve a Circuit	51
Cha	apter 2	
2.1	Combining Resistances in Series and Parallel	67
2.2	Circuit Analysis Using Series/Parallel Equivalents	70
2.3	Application of the Voltage-Division Principle	74
2.4	Applying the Current- and Voltage-Division Principles	75
2.5	Application of the Current-Division Principle	76
2.6	Node-Voltage Analysis	81
2.7	Node-Voltage Analysis	84
2.8	Node-Voltage Analysis	87
2.9	Node-Voltage Analysis	89
2.10	Node-Voltage Analysis with a Dependent Source	92
2.11	Node-Voltage Analysis with a Dependent Source	93
2.12	Mesh-Current Analysis	99
2.13	Mesh-Current Analysis	100
2.14	Writing Mesh Equations Directly in Matrix Form	102
2.15	Mesh-Current Analysis with Controlled Sources	105
2.16	Determining the Thévenin Equivalent Circuit	108
2.17	Zeroing Sources to Find Thévenin Resistance	109
2.18	Thévenin Equivalent of a Circuit with a Dependent Source	111
2.19	Norton Equivalent Circuit	113
2.20	Using Source Transformations	115
2.21	Determining Maximum Power Transfer	118

- 2.22 Circuit Analysis Using Superposition 121
- 2.23 Using a Wheatstone Bridge to Measure 124 Resistance

Chapter 3

- 3.1 Determining Current for a Capacitance 145 Given Voltage
- 3.2 Determining Voltage for a Capacitance 147 Given Current
- 3.3 Current, Power, and Energy for a 149 Capacitance
- 3.4 Calculating Capacitance Given Physical 153 Parameters
- 3.5 What Happened to the Missing Energy? 155
- 3.6 Voltage, Power, and Energy for an 159 Inductance
- 3.7 Inductor Current with Constant Applied 160 Voltage
- 3.8 Integration and Differentiation Using 167 the MATLAB Symbolic Toolbox

Chapter 4

4.1	Steady-State DC Analysis	185
4.2	RL Transient Analysis	187
4.3	RL Transient Analysis	189
4.4	Transient Analysis of an <i>RC</i> Circuit with a Sinusoidal Source	194
4.5	Analysis of a Second-Order Circuit with a DC Source	201
4.6	Computer-Aided Solution of a First- Order Circuit	210
4.7	Computer-Aided Solution of a Second-Order Circuit	211
4.8	Computer-Aided Solution of a System of Differential Equations	213

Chapter 5

- 5.1 Power Delivered to a Resistance by a 231 Sinusoidal Source
- 5.2RMS Value of a Triangular Voltage232
- 5.3 Using Phasors to Add Sinusoids 237
- 5.4 Steady-State AC Analysis of a Series 244 Circuit

5.5	Series and Parallel Combinations of Complex Impedances	246
5.6	Steady-State AC Node-Voltage Analysis	247
5.7	AC Power Calculations	256
5.8	Using Power Triangles	258
5.9	Power-Factor Correction	261
5.10	Thévenin and Norton Equivalents	263
5.11	Maximum Power Transfer	265
5.12	Analysis of a Wye–Wye System	273
5.13	Analysis of a Balanced Delta–Delta System	277
5.14	Phasor Mesh-Current Analysis with MATLAB	281

Chapter 6

6.1	Using the Transfer Function to Determine the Output	300
6.2	Using the Transfer Function with Several Input Components	302
6.3	Calculation of RC Lowpass Output	310
6.4	Determination of the Break Frequency for a Highpass Filter	320
6.5	Series Resonant Circuit	325
6.6	Parallel Resonant Circuit	328
6.7	Filter Design	333
6.8	Computer-Generated Bode Plot	335
6.9	Bode Plot Using the MATLAB Symbolic Toolbox	338
6.10	Step Response of a First-Order Digital Lowpass Filter	344

Chapter 7

7.1	Converting a Decimal Integer to Binary	370
7.2	Converting a Decimal Fraction to Binary	370
7.3	Converting Decimal Values to Binary	371
7.4	Adding Binary Numbers	371
7.5	Converting Octal and Hexadecimal Numbers to Binary	372
7.6	Converting Binary Numbers to Octal or Hexadecimal	373
7.7	Subtraction Using Two's-Complement Arithmetic	375
7.8	Using a Truth Table to Prove a Boolean Expression	379
7.9	Applying De Morgan's Laws	382
7.10	Combinatorial Logic Circuit Design	387

7.11	Finding the Minimum SOP Form for a	393
	Logic Function	

7.12 Finding the Minimum POS Form for a 394 Logic Function

Chapter 8

8.1	An Assembly-Language Program	441
8.2	Absolute Value Assembly Program	441
8.3	Manual Conversion of Source Code to Machine Code	442
8.4	Subroutine Source Code	443

Chapter 9

9.1	Sensor Loading	454
0.2	Specifications for a Computer Decad	166

9.2 Specifications for a Computer-Based 466 Measurement System

Chapter 10

10.1	Load-Line Analysis	490
10.2	Load-Line Analysis	491
10.3	Load-Line Analysis of a Zener-Diode Voltage Regulator	493
10.4	Analysis of a Zener-Diode Regulator with a Load	494
10.5	Analysis by Assumed Diode States	497
10.6	Piacowisa Linear Model for a Zener	400

- 10.6 Piecewise-Linear Model for a Zener499Diode
- 10.7 Analysis Using a Piecewise-Linear Model 500

Chapter 11

11.1	Calculating Amplifier Performance	534
11.2	Calculating Performance of Cascaded Amplifiers	536
11.3	Simplified Model for an Amplifier Cascade	537
11.4	Amplifier Efficiency	539
11.5	Determining the Current-Amplifier Model from the Voltage-Amplifier Model	541
11.6	Determining the Transconductance- Amplifier Model	543
11.7	Determining the Transresistance- Amplifier Model	544
11.8	Determining Complex Gain	549
11.9	Amplitude Distortion	553

11.10	Phase Distortion	554
11.11	Determination of the Minimum CMRR Specification	565
11.12	Calculation of Worst-Case DC Output Voltage	569
Chapter 12		
12.1	Plotting the Characteristics of an NMOS Transistor	589
12.2	Determination of Q Point for the Fixed- plus Self-Bias Circuit	596
12.3	Determination of g_m and r_d from the	601

- Characteristic Curves 12.4 Gain and Impedance Calculations for a 605 Common-Source Amplifier
- 12.5 Gain and Impedance Calculations for a 609 Source Follower

Chapter 13

13.1	Determining β from the Characteristic Curves	630
13.2	Load-Line Analysis of a BJT Amplifier	633
13.3	Determining the Operating Region of a BJT	641
13.4	Analysis of the Fixed Base Bias Circuit	642
13.5	Analysis of the Fixed Base Bias Circuit	643
13.6	Analysis of a BJT Bias Circuit	644
13.7	Analysis of the Four-Resistor Bias Circuit	647
13.8	Common-Emitter Amplifier	654
13.9	Emitter-Follower Performance	660

Chapter 14

14.1	Analysis of an Inverting Amplifier	678
14.2	Design of a Noninverting Amplifier	686
14.3	Amplifier Design	687
14.4	Summing Amplifier Design	688
14.5	Open-Loop and Closed-Loop Bode Plots	693
14.6	Full-Power Bandwidth	698
14.7	Determining Worst-Case DC Output	700
14.8	Lowpass Active Filter Design	710

Chapter 15

15.1 Magnetic Field around a Long Straight 733 Wire

15.2	Flux Density in a Toroidal Core	734
15.3	Flux and Flux Linkages for a Toroidal Core	735
15.4	The Toroidal Coil as a Magnetic Circuit	737
15.5	A Magnetic Circuit with an Air Gap	737
15.6	A Magnetic Circuit with Reluctances in Series and Parallel	739
15.7	Calculation of Inductance	742
15.8	Calculation of Inductance and Mutual Inductance	744
15.9	Determination of Required Turns Ratio	751
15.10	Analysis of a Circuit Containing an Ideal Transformer	753
15.11	Using Impedance Transformations	754
15.12	Reflecting the Source to the Secondary	755
15.13	Regulation and Efficiency Calculations	758

Chapter 16

16.1	Motor Performance Calculations	781
16.2	Idealized Linear Machine	784
16.3	DC Machine Performance Calculations	792
16.4	Shunt-Connected DC Motor	795
16.5	Series-Connected DC Motor	800
16.6	Separately Excited DC Generator	809

Chapter 17

17.1	Induction-Motor Performance	833
17.2	Starting Current and Torque	836
17.3	Induction-Motor Performance	837
17.4	Synchronous-Motor Performance	845
17.5	Power-Factor Control	847

Appendix A

A.1	Complex Arithmetic in Rectangular Form	864
A.2	Polar-to-Rectangular Conversion	865
A.3	Rectangular-to-Polar Conversion	866
A.4	Exponential Form of a Complex Number	868
A.5	Complex Arithmetic in Polar Form	869

List of Tables

1.1	Current and Emerging Electronic/Electrical Applications in Automobiles and Trucks	21
1.2	Prefixes Used for Large or Small Physical Quantities	34
1.3	Resistivity Values (Ωm) for Selected Materials at 300 K	46
3.1	Relative Dielectric Constants for Selected Materials	153
6.1	Frequency Ranges of Selected Signals	298
6.2	Transfer-Function Magnitudes and Their Decibel Equivalents	311
6.3	Values of the Approximate Expression (Equation 6.20) for Selected Frequencies	316
6.4	Values of the Approximate Expression Given in Equation 6.26 for Selected Frequencies	319
7.1	Symbols for Octal and Hexadecimal Numbers and Their Binary Equivalents	372
7.2	Truth Table Used to Prove the Associative Law for the OR Operation (Equation 7.8)	380
7.3	Truth Table Used to Prove That $A(BC) = (AB)C$ (Equation 7.5)	380
7.4	Truth Table Used to Prove That $A(B + C) = AB + AC$ (Equation 7.9)	380
7.5	Truth Table for $D = AB + C$	381
7.6	Truth Table Used to Illustrate SOP and POS Logical Expressions	385
7.7	Truth Table for Exercise 7.14	389
7.8	Answer for Exercise 7.15	391
7.9	Truth Table for Exercise 7.20	398
8.1	Selected Instructions for the CPU12	432
9.1	Measurands and Sensor Types	453
11.1	Characteristics of Ideal Amplifiers	547
11.2	Complex Gains of the Amplifiers Considered in Example 11.10	554
12.1	MOSFET Summary	591
13.1	Results for the Circuit of Example 13.6	645
14.1	K Values for Lowpass or Highpass Butterworth Filters of Various Orders	710
15.1	Circuit Values of a 60-Hz 20-kVA 2400/240-V Transformer Compared with Those of an Ideal Transformer	757
16.1	Characteristics of Electrical Motors	774
17.1	Synchronous Speed versus Number of Poles for $f = 60 \text{ Hz}$	825
B .1	Standard Nominal Values for 5-percent-Tolerance Resistors	873
B.2	Standard Values for 1-percent-Tolerance Metal-Film Resistors	873

Electrical Engineering Principles and Applications

This page intentionally left blank

Electrical Engineering Principles and Applications

SIXTH EDITION

Allan R. Hambley

Department of Electrical and Computer Engineering Michigan Technological University arhamble@mtu.edu

International Edition contributions by

Narendra Kumar Department of Electrical Engineering Delhi Technological University

Ashish R Kulkarni Department of Electrical Engineering Delhi Technological University

PEARSON

Upper Saddle River Boston Columbus San Francisco New York Indianapolis London Toronto Sydney Singapore Tokyo Montreal Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town Vice President and Editorial Director, ECS: Marcia J. HortonPSenior Editor: Andrew GilfillanPAssociate Editor: Alice DworkinSEditorial Assistant: William OpaluchSVice President, Production: Vince O'BrienSSenior Managing Editor: Scott DisannoMProduction Editor: Pavithra Jayapaul, Jouve IndiaASenior Operations Supervisor: Alan FischerCPublisher, International Edition: Angshuman ChakrabortyCPublishing Administrator and Business Analyst, International
Edition: Shokhi Shah KhandelwalMSenior Print and Media Editor, International Edition: Ashwitha
JayakumarFAcquisitions Editor, International Edition: Sandhya GhoshalF

Publishing Administrator, International Edition: Hema Mehta
Project Editor, International Edition: Karthik Subramanian
Senior Manufacturing Controller, Production, International Edition: Trudy Kimber
Senior Marketing Manager: Tim Galligan
Marketing Assistant: Mack Patterson
Art Director: Kenny Beck
Cover Art Director: Kristine Carney
Cover Designer: Black Horse Designs
Art Editor: Greg Dulles
Media Editor: Daniel Sandin
Media Project Manager: Danielle Leone
Full-Service Project Management: Jouve India

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoninternationaleditions.com

© Pearson Education Limited 2014

The rights of Allan R. Hambley to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Electrical Engineering—Principles and Applications, 6th edition, ISBN 978-0-13-311664-9, by Allan R. Hambley, published by Pearson Education © 2014.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

Typeset in TimesTen-Roman by Jouve India.

Printed and bound by Courier Kendalville in The United States of America The publisher's policy is to use paper manufactured from sustainable forests.

> 10 9 8 7 6 5 4 3 2 1 14 13 12 11 10 ISBN-13: 978-0-273-79325-0 ISBN-10: 0-273-79325-X

To Judy, Tony, Pam, and Mason

Practical Applications of Electrical Engineering Principles

1.1 Using Resistance to Measure Strain *47*

2.1An Important Engineering Problem: Energy-Storage Systems for Electric Vehicles 1183.1

Electronic Photo Flash 163

4.1

Electronics and the Art of Automotive Maintenance 208

6.1

Active Noise Cancellation 305

7.1

Biomedical Engineering Application of Electronics: Cardiac Pacemaker 403

8.1

Fresh Bread Anyone? 426

9.1

The Virtual First-Down Line 462

11.1

Electronic Stud Finder 567

12.1

Where Did Those Trout Go? 611

13.1

Soup Up Your Automobile by Changing Its Software? 636

14.1

Mechanical Application of Negative Feedback: Power Steering 684

16.1

Magnetic Flowmeters, Faraday, and The Hunt for Red October 786

Practical Applications of Electrical Engineering Principles 6

Preface 11

1

Introduction 19

- 1.1 Overview of Electrical Engineering 20
- 1.2 Circuits, Currents, and Voltages 24
- 1.3 Power and Energy 31
- 1.4 Kirchhoff's Current Law 34
- 1.5 Kirchhoff's Voltage Law 37
- 1.6 Introduction to Circuit Elements 40
- 1.7 Introduction to Circuits 48 Summary 52 Problems 53

2

Resistive Circuits 64

- 2.1 Resistances in Series and Parallel 65
- 2.2 Network Analysis by Using Series and Parallel Equivalents 69
- 2.3 Voltage-Divider and Current-Divider Circuits 73
- 2.4 Node-Voltage Analysis 78
- 2.5 Mesh-Current Analysis 97
- 2.6 Thévenin and Norton Equivalent Circuits 106
- 2.7 Superposition Principle 119
- 2.8 Wheatstone Bridge 122 Summary 125 Problems 127

3

Inductance and Capacitance 142

- 3.1 Capacitance 143
- 3.2 Capacitances in Series and Parallel 150

- 3.3 Physical Characteristics of Capacitors 152
- 3.4 Inductance 156
- 3.5 Inductances in Series and Parallel 161
- **3.6** Practical Inductors 162
- 3.7 Mutual Inductance 165
- 3.8 Symbolic Integration and Differentiation Using MATLAB 166 Summary 170 Problems 171

4

Transients 180

- 4.1 First-Order *RC* Circuits 181
- 4.2 DC Steady State 185
- **4.3** *RL* Circuits 187
- 4.4 *RC* and *RL* Circuits with General Sources 191
- 4.5 Second-Order Circuits 197
- 4.6 Transient Analysis Using the MATLAB Symbolic Toolbox 209 Summary 215 Problems 216
- 5

Steady-State Sinusoidal Analysis 227

- 5.1 Sinusoidal Currents and Voltages 228
- 5.2 Phasors 234
- 5.3 Complex Impedances 240
- 5.4 Circuit Analysis with Phasors and Complex Impedances 243
- 5.5 Power in AC Circuits 249
- 5.6 Thévenin and Norton Equivalent Circuits 262
- 5.7 Balanced Three-Phase Circuits 267

5.8 AC Analysis Using MATLAB 279 Summary 283 Problems 284

6

Frequency Response, Bode Plots, and Resonance 296

- 6.1 Fourier Analysis, Filters, and Transfer Functions 297
- 6.2 First-Order Lowpass Filters 305
- 6.3 Decibels, the Cascade Connection, and Logarithmic Frequency Scales 310
- 6.4 Bode Plots 314
- 6.5 First-Order Highpass Filters 317
- 6.6 Series Resonance 321
- 6.7 Parallel Resonance 326
- 6.8 Ideal and Second-Order Filters 329
- 6.9 Transfer Functions and Bode Plots with MATLAB 335
- 6.10 Digital Signal Processing 340 Summary 349 Problems 351

7

Logic Circuits 365

- 7.1 Basic Logic Circuit Concepts 366
- 7.2 Representation of Numerical Data in Binary Form 369
- 7.3 Combinatorial Logic Circuits 377
- 7.4 Synthesis of Logic Circuits 384
- 7.5 Minimization of Logic Circuits 391
- 7.6 Sequential Logic Circuits 395
 Summary 406
 Problems 407

8

Computers and Microcontrollers 418

- 8.1 Computer Organization 419
- 8.2 Memory Types 422
- 8.3 Digital Process Control 424
- 8.4 Programming Model for the HCS12/9S12 Family 427
- 8.5 The Instruction Set and Addressing Modes for the CPU12 431
- 8.6 Assembly-Language Programming 440 Summary 445 Problems 446

9

Computer-Based Instrumentation Systems 451

- 9.1 Measurement Concepts and Sensors 452
- 9.2 Signal Conditioning 457
- 9.3 Analog-to-Digital Conversion 464
- 9.4 LabVIEW 467 Summary 480 Problems 481

10

Diodes 485

- 10.1 Basic Diode Concepts 486
- 10.2 Load-Line Analysis of Diode Circuits 489
- 10.3 Zener-Diode Voltage-Regulator Circuits 492
- 10.4 Ideal-Diode Model 496
- 10.5 Piecewise-Linear Diode Models 498
- 10.6 Rectifier Circuits 501
- 10.7 Wave-Shaping Circuits 506
- 10.8 Linear Small-Signal Equivalent Circuits 511 Summary 517 Problems 517

11

Amplifiers: Specifications and External Characteristics 529

- 11.1 Basic Amplifier Concepts 530
- 11.2 Cascaded Amplifiers 535
- 11.3 Power Supplies and Efficiency 538
- 11.4 Additional Amplifier Models 541
- 11.5 Importance of Amplifier Impedances in Various Applications 544
- 11.6 Ideal Amplifiers 547
- 11.7 Frequency Response 548
- 11.8 Linear Waveform Distortion 553
- 11.9 Pulse Response 557
- 11.10 Transfer Characteristic and Nonlinear Distortion 560
- 11.11 Differential Amplifiers 562
- 11.12 Offset Voltage, Bias Current, and Offset Current 566 Summary 571 Problems 572

12

Field-Effect Transistors 584

- 12.1 NMOS and PMOS Transistors 585
- 12.2 Load-Line Analysis of a Simple NMOS Amplifier 592
- 12.3 Bias Circuits 595
- 12.4 Small-Signal Equivalent Circuits 598
- 12.5 Common-Source Amplifiers 603
- 12.6 Source Followers 606
- 12.7 CMOS Logic Gates 611 Summary 616 Problems 617

13

Bipolar Junction Transistors 625

- 13.1 Current and Voltage Relationships 626
- 13.2 Common-Emitter Characteristics 629
- 13.3 Load-Line Analysis of a Common-Emitter Amplifier 630
- 13.4 *pnp* Bipolar Junction Transistors 636
- 13.5 Large-Signal DC Circuit Models 638
- 13.6 Large-Signal DC Analysis of BJT Circuits 641
- 13.7 Small-Signal Equivalent Circuits 648
- 13.8 Common-Emitter Amplifiers 651
- 13.9 Emitter Followers 656 Summary 662 Problems 663

14

Operational Amplifiers 673

- 14.1 Ideal Operational Amplifiers 674
- 14.2 Inverting Amplifiers 675
- 14.3 Noninverting Amplifiers 682
- 14.4 Design of Simple Amplifiers 685
- 14.5 Op-Amp Imperfections in the Linear Range of Operation 690
- 14.6 Nonlinear Limitations 694
- 14.7 DC Imperfections 699
- 14.8 Differential and Instrumentation Amplifiers 703
- 14.9 Integrators and Differentiators 705
- 14.10 Active Filters 708 Summary 712 Problems 713

15

Magnetic Circuits and Transformers 726

- 15.1 Magnetic Fields 727
- 15.2 Magnetic Circuits 736
- 15.3 Inductance and Mutual Inductance 741
- 15.4 Magnetic Materials 745
- 15.5 Ideal Transformers 749
- 15.6 Real Transformers 756 Summary 761 Problems 761

16

DC Machines 772

- 16.1 Overview of Motors 773
- 16.2 Principles of DC Machines 782
- 16.3 Rotating DC Machines 787
- 16.4 Shunt-Connected and Separately Excited DC Motors 793
- 16.5 Series-Connected DC Motors 798
- 16.6 Speed Control of DC Motors 802
- 16.7 DC Generators 806 Summary 811 Problems 812

17

AC Machines 821

- 17.1 Three-Phase Induction Motors 822
- 17.2 Equivalent-Circuit and Performance Calculations for Induction Motors 830
- 17.3 Synchronous Machines 839
- 17.4 Single-Phase Motors 851
- 17.5 Stepper Motors and Brushless DC Motors 854 Summary 856 Problems 857

APPENDICES

A

Complex Numbers 863

Summary870Problems870